Thursday, 20 March 2014

what is xrf (x-ray

WHAT IS XRF (X-RAY

                                              WHAT IS XRF (X-RAY

 FLUORESCENCE SPECTROMETRY)?


 X-ray fluorescence spectrometry is one of the most efficient instrumental means to detect the elemental composition of the homogeneous obsidian. It’s speed, precision for incompatible elements, ready availability, and consequent low cost make EDXRF particularly ideal for the non-destructive analysis of archaeological obsidian. It is not necessarily the best suited for the analysis of heterogeneous substances, but with recent advances in x-ray spectrometry and new software it is becoming one of the best instruments for the analysis of nearly any archaeological material
A BRIEF INTRODUCTION ð XRF OF ARCHAEOLOGICAL OBSIDIAN
(HOW IT WORKS)
When the atoms in a sample material are irradiated with high-energy primary x-ray photons, electrons are ejected in the form of photoelectrons. This creates electron 'holes' in one or more of the orbitals, converting the atoms into ions - which are unstable.

To restore the atoms to a more stable state, the holes in inner orbitals are filled by electrons from outer orbitals. Such transitions may be accompanied by an energy emission in the form of a secondary x-ray photon - a phenomenon known as "fluorescence"


The various electron orbitals are called K, L, M, etc., where K is closest to the nucleus. Each corresponds to a different energy level - and the energy (E) of emitted fluorescent photons is determined by the difference in energies between the initial and final orbitals for the individual transitions.
The amount of x-ray fluorescence is very sample dependent and quantitative analysis requires calibration with standards that are similar to the sample matrix. For obsidian analyses, North American labs use obsidian and rhyolite standards from USGS, NIST, and the Japan Geological Survey. The technique provides an elemental, not a chemical analysis. XRF is inapplicable to the first 11 elements of the periodic table. Sample penetration varies from about 0.01mm to 1mm in depth depending on the sample material. Analysis is occasionally complicated by interfering x-ray lines and by matrix effects, which are corrected in both EDXRF and WXRF by linear and quadratic algorithms.
Characteristic x-ray emissions result in an energy spectrum that is a "fingerprint" of the specimen. The intensities of the peaks in the spectrum are roughly proportional to the concentrations of the constituent elements
X-ray fluorescence can be measured and quantified in two ways. Wavelength dispersive XRF uses a crystal to separate the various wavelengths: for every angle of incident radiation, the only wavelength reflected to the detector is the one that conforms to Bragg’s formula:
nl = 2d sin q
where n is a whole number 1-n, l is the wavelength of the x-ray radiation used; d is a constant characteristic of every crystalline substance (i.e. the x-ray crystal); and q is the angle on incidence of the x-radiation on the sample.
So, by changing the angle of the crystal, you can select for specific elements of interest. In the Philips PW 2400 at Berkeley, this is all done automatically and any combination of elements can be analyzed. The system changes crystals for the various elements, calculates the overlap of elements within the spectrum and yields results in any form desired: qualitative, ratio, quantitative, graphic.
The second and more common method in North America for analyzing obsidian is EDXRF
EDXRF systems detect elements on the periodic table between atomic numbers 11 (Na) and 92 (U). Samples can be analyzed non-destructively with little or no sample preparation in minutes and in some cases seconds. Elements in concentrations from as low as a few parts per million to 100% may be analyzed in the same sample simultaneously. Accuracy of less than one percent relative error are attainable with comparable reproducibility
Analysis by EDXRF, like WXRF involves use of ionizing radiation to excite the sample, followed by detection and measurement of X-rays leaving the sample that are characteristic of the elements in the sample.

No comments:

Post a Comment